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1. Introduction

Interactions among people fall into two categories: simultaneous interactions such as face-to-face

meetings or telephone conversations, and asynchronous interactions such as correspondence via

the postal service. Each is appropriate for different situations, and neither is likely to completely

replace the other. Asynchronous interaction can be extremely useful and efficient in that each

communicator can act at a time and rate of his own choosing. However, it is often the case that after

a sequence of asynchronous exchanges of information, proposals, and counterproposals it is

necessary to negotiate in real time in order to resolve outstanding issues. Rapid group decision-

making in a crisis situation also requires simultaneous interaction.

In the area of computer support for group interactions, asynchronous communication can be

accomplished in several ways: electronic mail[l1], computer conferencing [13], or forms

management [26]. With a few exceptions, simultaneous interaction in such "meetings at a distance"

has been largely neglected. Our research is concerned with implementing real-time conferences, in

which groups of users at interconnected workstations can collectively view and manipulate on-line

information. A real-time conference is not intended to simulate or replace every kind of face-to-face

meeting. For meetings where the social and political content is dominant, the computer cannot help

much; if face-to-face interaction is impossible or inconvenient, some form of video teleconferencing -

might be appropriate. However, for meetings where problem-solving using on-line information is the

primary objective, a real-time conference allows a group of problem solvers to exploit the full power of - -

the computer to retrieve, edit, process, and store information, without leaving their desks to convene -.-

" a face-to-face meeting.

A real-time conference consists of an informational component and a discussion component. For

the purpose of this research, we assume that the two components are implemented separately and
independently, and focus our attention on the informational component. A voice communication

channel is typically sufficient to allow spirited discussion and negotiation [1], and we will assume that

the participants in a given real-time conference will set up the discussion component by some

unspecified external means, e.g., a telephone conference call. We note, however, that the ideas - -

presented in this paper are equally applicable to the voice channel if the hardware is available for

building an integrated conferencing system that includes voice as well as data.

An example real-time conferencing system is a prototype named RTCAL (for Real-Time CALendar)

that we implemented at the MIT Laboratory for Computer Science. RTCAL allows a group of users In

a conference to exchange information from their personal calendar databases [10] in order to

schedule a future meeting. The participants in a conference also typically set up a telephone

• . - .
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connection to allow them to discuss their schedules and the planned meeting.

+--------------------------------------------------------------------------------
IRTCAL 3.2 ctrl-t for control commands 12-4-82 11:52:07 Load=8.7 SARiNI

-----------------------------------------------------------------------------

Ischeduling meeting "thesis" uncommitted (2hrs, 12-25-82 to 12-31-82)1
With SARIN LICKLIDER GREIF HAMMER

IN-Session IN-Session IN-Session Absent
session Running chairperson: SARIN controller: SARIN

+------------------------------------------------------------------------------------
ILICKLIDER joined session - all replies received
+------------------------------+-----------------------------------------------------

IMonday 27 December 1982 IPrivate calendar: 27 December 1982
IMerge of SARIN LICKLIDER GREIF Joe's birthday
9:00 XXX 9:00
9:30 XXX 9:30

110:00 110:00
110:30 110:30
111:00 111:00
111:30 111:30
112:00 112:00
112:30 XXX 112:30 lunch
113:00 113:00
113:30 113:30
114:00 XXX 114:00 Arpa meeting
114:30 XXX 114:30 xx
115:00 XXX 115:00
_. ----------------------------------------------------- +

COMMAND> propose 10:30
-------------------------------------------------------------------------------------

Figu re 1 -1: Example RTCAL Screen

The format of a participant's display screen in RTCAL is shown in Figure 1.1. The top of the screen

presents "status" information such as the meeting subject and the names of the participants present

in this conference. A shared "window" on the left shows blocks of free and busy times, obtained by

"merging" information from the participants' calendars; all participants see this information. A

private window, on the right, shows detailed information about the participant's own appointments,

not visible to the other participants. The shared space can be "scrolled" to show a different date and

time range (which causes participants' private windows to scroll in unison), or the set of participants

whose schedules are merged can be changed. Specific times for the planned meeting can be

protosed, and participants' votes are collected and tabulated. Multiple alternitive proposals can be

generated and reviewed, and a final meeting time selected by committing any one proposal;

..........................................
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commitment can be "undone" to recover from mistakes. These calendar commands are "echoed"

on all participants' screens as they are typed.

Only one person at a time, referred to as the controller, can enter calendar commands. The

conference chairperson (in RTCAL, the person who initiated the conference) may designate a new
controller (including himself) at any time. This is done using a separate set of commands referred to

as control commands. Control commands also allow participants to "request" control. Participants

may leave the conference temporarily and receive an up-to-date display when they return. The

chairperson may terminate the conference whenever he chooses; a meeting time may or may not

have been committed.

RTCAL was our initial experiment in real-time conferencing; it supports a particular kind of problem-

solving in a specific application. The objective of our research is to extend these ideas to other

applications (such as computer-aided design, joint auihorship of documents, financial planning using

"spreadsheets", or on-line tutorials and instruction), as well as to allow more varied "styles" of

conferencing (such as concurrent commands from participants, and more flexible interaction than

with a single fixed "chairperson"). The design of a joint document editing system illustrating these

goals is described in [23].

This paper presents an architecture for real-time conferences and a common set of functions that

can be used to support conferencing in many applications, such as the above, using many different

conference styles. In this model, the primary purpose of a conference, for whatever application, is the

sharing of one or more objects (e.g., documents, circuits, agendas, proposals, or screen images)

. among a group of participants, allowing manipulation of these objects in a controlled way via one or

more groups of commands called activities. The structure and meaning of the objects and activities

in a conference will be specific to the given application, but the dynamics of sharing the objects and - -

setting up the activities is performed by a common software utility that we have named Ensemble. ..

In Section 2 we describe a "layered" architecture, not unlike that of the ISO Open Systems

Interconnection (OSI) reference model [14], in which the Ensemble "layer" provides conference

control functions to the application "layer". The functions provided are conference initiation and

termination, participants joining and leaving a conference, and the sharing of application-defined

objects and activities. In Section 3 we illustrate how these functions can be used to construct

particular kinds of conferences, by presenting the design of a "shared bitmap" facility that allows

participants to view an identical bitmapped image on their workstation screens and move

independent cursors over this image using their pointing devices. We conclude in Section 4 by

noting that the Ensemble functions correspond very closely with the stated function of the OSI

. . . j-..
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"Session" layer, and that Ensemble is therefore a plausible starting point for developing a "multi-

endpoint" Session layer protocol.

.**......



2. Ensemble Conference Architecture
This section introduces the conference control functions provided by Ensemble, in the context of a

layered distributed system model.

2.1. System Model

We assume that the system consists of a collection of nodes that do not share memory but

communicate only via messages sent over a communications network or internetwork; we assume

that messages between any two nodes are reliably received in the order sent. We will assume in the
following discussion that each node is running on a separate processor, with the understanding that
multiple nodes might in fact be invisibly multiplexed on a single physical machine. (This model is thus

in many ways similar to other contemporary models of distributed computing, such as "guardians"

Weassume that the functions within a given node are arranged into layers. While discussing

Ensemble, we shall assume that there are just two layers:

1. The Ensemble layer, which provides the conference control facilities we describe here.

2. The application layer, which uses the Ensemble facilities in order to implement real-time
conferences for one or more applications.

In actual practice, the Ensemble and application layers may be further subdivided into layers, as in thu

ISO Open Systems Interconnection reference model [14]. For example, the application "layer" may
have a Presentation layer performing window management and command parsing, while the.-

Ensemble "layer" will have a Transport and lower layers that provide the underlying communication

services.

The Ensemble layer (perhaps via a lower "Physical" layer) is the only layer that interfaces directly

with attached hardware devices, namely disks, networks, and workstation display and input devices.

Services not directly related to conference communication, such as shared file storage and "window
management", are assumed to be implemented by the "application" layer, with Ensemble providing

only a fairly low-level interface to the associated devices.1

P As shown in Figure 2-1, interaction between the Ensemble and application layers within a- node

takes place in the form of two kinds of calls that each makes of the other:

Downcalls from the application layer to the Ensemble layer, typically "requesting"

1We make this assumption only so as to concentrate on the specification of Ensemble's conferencing functions. In actual
* practice it would probably be desirable to standardize these other services across all applications (using any of several

well-known techniques) and place them in a lower layer than the application.
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+------------------I I :?
I APPLICATIONI I ::: :

I i
Downcallsl IUpcalls

I I
v I

-------------------- +
I I
I ENSEMBLE II I" •
+------------------

Figure 2-1: Layer Interface within a Node
I

conference- related or other i/o device services.

Upcalls from the Ensemble layer to the application layer, typically reporting "events"
related to some previous request for service.

(This terminology is due to Clark [2].) Each call, up or down, is a kind of "message", that causes a

handler in the called layer to be invoked. Unlike message-passing systems, however, we assume that

the layers interact as cooperating "coroutines": downcalls and upcalls are synchronous, in that the

layer making the call does not continue to run in parallel with the other layer's handler, but is blocked

until the handler returns.

At any given time, a node is processing one event, which may be one of the following:

* An event from a hardware device, such as a disk, netwrk, user input device, or a timer.

- A special background event that is defined to occur when there are no other events
waiting to be processed.

* A special initialize event, perhaps triggered by hitting the machine's "boot" button, which
is used to start the node.

Each event causes a handler in the Ensemble layer to be invoked, which may make upcalls to the

application layer, which may in turn make downcalls to the Ensemble layer. (To avoid mutual

recursion, we require that Ensemble's downcall handlers not make upcalls to the application layer.)

The node must dispose of one event, i.e., Ensemble's event handler must return, before the next

.....................................-~I...............-.. ..... ...
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2event can be processed. This structure implies that the lower layer, Ensemble, is "in charge", and

application layer functions are invoked as required by the Ensemble layer. This "upside down" view

runs counter to the traditional view of the "application" being in control and invoking "system"

* functions, but does in fact correspond better with the reality of how asynchronous events are

processed by a system. This inverted approach is beginning to gain wide acceptance. For example,
T tTM~ OTMin the VisiOnTM [17] system the VisiHost is in charge of all activity. The VisiHost invokes specific

application functions at the appropriate times, and blocks until the application functions,

corresponding to our "handlers", complete. The advantages of such an approach are discussed in

more detail in [2].

We find it convenient to distinguish two kinds of functions that a given node might perform:
Front-end (or FE) functions: interfacing with a user's display and input devices and

managing the set of objects that he is working with at any given time.

Server functions: shared file storage, mail facilities, name lookup, and conference
control.

This distinction applies to both the Ensemble layer and the application layer. We shall call the

respective sets of functions in the two layers Ensemble-server, Ensemble-FE, application-server, and

application-FE.

2.2. Conferences, Objects, and Activities

Within the context defined above, a conference is an agreement among a collection of front-end

nodes, representing the participants of the conference, and a server node, that controls the

conference, to share a specified collection of objects and to allow manipulation of some or all of these

objects via specified activities.

7 We assume a centralized architecture for any given conference, in which the front.ends of the
participants communicate only with the server controlling the conference; this is illustrated in Figure

2-2.3 Note that we do not assume a centralized architecture for the system as a whole; different server

nodes may control different conferences.

Objects in a conference are controlled by the conference's server node. The most common type of

2It is assumed that hardware device events. which usually must be caught within a very short time interval, are not lost, by

having them queued by code running at the machine's "interrupt level". It is still desirable for handlers to return quickly In
order for the node to remain responsive to incoming events; a handler that needs to perform lengthy computation or i/o can
return quickly by setting up some state information that will cause the required processing to be performed by some later
handler, e.g., in "background" or in response to a timeout.

3 Decentralized architectures, in which front-end nodes can communicate directly, are discussed in [23].

-................
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SERVER Front-End Front-End

+----------+ +----------+ ----------

I Applic.1 I Applic.1 I Applic.1
I Serveri I FE I I FE I
---------- ---------- +----------

t t
I I I
V V V

---------- ---------- ----------

IEnsemblel lEnsemblel .... lEnsemblel
I serverI I FE I I FE I
---------- "---------- ----------

t t t t
I . .II I

I v v I
v v

V------------------------------------------------------------

(Communication Network)

Figure 2-2: Conference Architecture

"object" that might be shared in a conference is an image that can be directly displayed on the

participants' workstation screens; examples of images are text images, graphs, line-drawings, raster

images, and so on. A shared image is thus the means by which the illusion of a common

"blackboard" can be presented. (Unlike a blackboard, however, an image will often present a view of

(part of) a more abstract application object, e.g., a document or a circuit.) This notion of "image" is

purely a convention involving the application-server and application-FEs. Ensemble is not aware of

the semantics of an object, and many other kinds of objects can be shared in a conference, such as:

* High-level application objects, e.g., documents or circuit designs.

-Objects used to facilitate participant interaction in the conference, e.g., agendas,
minutes, proposals and votes, or a queue of "requests" for permission to enter
commands.

- Objects exchanged by the server and front-ends to determine run-time parameters such
as the maximum bandwidth and size of objects that can be supported.

Objects shared in a conference are updated only by the application-server; the application-FEs'

copies are "read-only" in that an application-FE cannot modify its copy except in response to updates

received from the application-server. (Again, we assume that the server and front-end nodes are

cooperating properly in realizing a real-time conference, so we do not concern ourselves with nodes
behaving incorrectly or maliciously.) Such updates to objects are generated by the application-server 7

according to its own criteria. While it is quite possible for updates to be spontaneously generated by



the application-server (e.g., when running a simulation, or responding to events outside the

conference), more typically the purpose of a conference will be to let the participants themselves

initiate updates (e.g., to edit a document or circuit) via some set of defined commands. Commands

initiated by a participant are forwarded by the participant's application-FE to the application-server

(via facilities that Ensemble provides) for processing; the application processes these commands,

updating one or more shared objects or generating error messages as appropriate.

Commands in a conference are grouped into activities such that permission to enter the commands

in a given activity can be independently given out to a selected subset of the conference participants.

This allows for different logical groupings of commands, e.g., "application" commands versus
"conference control" commands, as in the example system RTCAL. The application-server can give

different participants permission to enter different types of commands, and can dynamically give and

revoke such permission during the course of a conference.

Each object in a conference is "shared" among some subset of the conference participants in the

sense that the given participants' application-FEs are provided with copies of the given object and

receive updates from the server as they occur. A participant's application-FE can present him with a

view of some or all of these objects, under control of the participant. Most objects in a conference will

be "universally" shared in that they are displayed to, or made available for display to, all of the

participants in the conference. Other objects might be available to only a single participant, e.g.,

* feedback messages informing the participant that he does not have permission to enter certain

commands; such feedback would not be meaningful to the other participants. In most conferences,

we expect that each object will fall into one of these two classes, i.e., shared with all participants or

available to just a single one. In some conferences, however, it may be necessary to support

"subgroup" discussions, and Ensemble provides the flexibility for defining objects that are shared

with any subset of a conference's participants.

The application-server indicates its desire to "share" an object with a given participant's

application-FE by issuing a "Give-Object" downcall to the Ensemble-server; an encoded description

of the object's current value is passed to the participant's application-FE in an upcall from the

Ensemble-FE. Subsequent updates to the given object, generated by the application-server, are

transmitted by Ensemble to the application-FE only if the latter indicates willingness to receive and

process them; the application-FE does this using an Accept-Object downcall. The application-FE

may instead decline to receive updates, using the Decline-Object downcall, for whatever reason (e.g.,

insufficient local storage or processing power); updates to the object will not transmitted by Ensemble

to this particular application-FE.

; .. .... .. ... .. ..*. ..- .,-. . -. . . h . . , . .. . . . . . . . .. . . . . i.
- -'=-Z .'=,_o ,,"°" o . -"."-"-" - - ' "-,.. -, .. ' .-- '-=-o.,.'.• .. •.'.',. .° .... ".L
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Every conference has a distinguished object, called its description, that is always shared among all

of its participants. The purpose of the conference description is threefold:

1. To allow the application-server to properly set up its state information when it receives an

Initialize-Conference upcall. The conference description might include, for example, the
name of a file containing the document to be edited in the conference.

2. To instruct the participants' application-FEs to supply information that will be used by the
application-server in setting up some of the objects in the conference. In the example
that follows, in the next section, the size of a bitmapped image is to be selected based on
available screen space information received from the application-FEs; the conference
description should specify what information of this kind is needed.

3. To help a user decide whether to join the conference or to leave, e.g., by providing brief
textual statements about the "purpose" of the conference and the estimated time and
duration of the conference. (Some of the information used by the application-server and
application-FE, above, might also be meaningfully presented to the user.)

It is of course up to the application to supply a conference description that accomplishes the above

goals; Ensemble is not aware of the structure and semantics of the conference description, or of any

other object.

A participant is brought into a conference by "sharing" the conference description with his

application-FE:

- The application-server issues an Add-Participant downcall, which gives the participant's
application-FE a copy of the conference description.

-The participant's application-FE issues a Join-Conference downcall, "accepting" the
conference description. (The participant may instead choose not to join the conference;
the Leave-Conference downcall "declines" the conference object.)

When the application-server receives an upcall indicating that the participant has joined, it then

determines which shared objects the participant should receive (using its own access control

criteria), and proceeds to "give" these objects to the participant as described above. Note that the

protocol used for sharing the conference description is the same as that for sharing any other object

in the conference; the Add-Participant, Join-Conference, and Leave-Conference downcalls are simply

specialized versions of Give-Object, Accept-Object, and Decline-Object, respectively.

Ensemble provides the basic facilities for setting up a conference among a group of participants (by

sharing the conference "description", as above) and for sharing objects and activities within a

conference. There are several important services that Ensemble does not provide, such as

permanent file storage, access control, naming and authentication, and user interface management.

These functions are assumed to be implemented "above" Ensemble, by the "application" layer, in

whatever manner the system or application designer deems appropriate,
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The Ensemble architecture also does not directly address performance issues, e.g., the bandwidth

and processing power required to achieve a desired response time for a given application and given

number of participants; these must be considered by the application designer in the context of his

particular system. Clearly, a richer interface and faster response time will be attainable on a high-

bandwidth local area network than over a long-haul network or internet, and performance will in both

cases degrade as the number of participants increases. (For example, the response time of the

shared bitmap facility of the next section may not be adequate with a slow network.) If performance

information (about communication bandwidth and delay, and front-end processing capabilities) is

available at run-time, the application designer can incorporate their values into shared "objects" and

can program the application-server to tune the interface and underlying update and activity protocol

to the run-time parameters.

A complete list of the "downcalls" and "upcalls" for setting up conferences, shared objects, and

activities, is presented in the Appendix. Ensemble deals with objects, updates thereof, and activities,

and commands therein, as uninterpreted "blocks" of data that are transmitted between application-

server and application-FEs as necessary; the syntax and semantics are imposed by the application

(server and front-ends). Ensemble also does not specify how the application (server or front-end)

should respond to a particular upcall, e.g., what processing it should perform and what downcalls it

should make; it is up to the application designer to program handlers in the application server and

front-ends that will accomplish the functionality and interface desired in the given real-time

conference. Techniques available to the application designer are discussed in [23].

-.-r

....................................................- "
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3. Example: Sharing a Bitmap

To illustrate how the functions provided by Ensemble can be used to implement real-time

conferences, we present a facility that allows participants in a conference to share a virtual

bitmapped screen. The shared bitmap facility also allows for keyboard and pointing device input from

some or all participants.

SERVER Front-End(s)

----------
I Applic.-
I Server I
----------

V
+----------+ +----------

I Bitmap j Bitmap I
Server I I FE I

---------- ----------
t t

V v
---------- ----------
lEnsemblel IEnsemblel
I Server I E I
----------+ +----------+

t t

Figure 3-1: Architecture of Shared Bitmap System

The shared bitmap facility can be used in conferences by many different applications. It is thus an

intermediate-level abstraction that lies between the Ensemble layer and the high-level application

code. (The shared bitmap is an advanced form of virtual terminal [5, 16]; in terms of the Open

Systems Interconnection reference model, it corresponds to the Presentation layer.) This layering is

shown in Figure 3- 1.

The application-server manages some set of application objects, e.g., documents, circuits,

spreadsheets, etc., and presents some view of these objects on the shared bitmap. (A simple

application-server could also be written to provide an "electronic blackboard" on which participants

can draw figures and enter text.) These application objects are internal to the application-server and

are not "shared objects" from Ensemble's point of view; they are visible to the participants only

indirectly via whatever view the application-server presents in the shared bitmap, and may be

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.-------------------------------------------
- - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -
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manipulated by participants only by entering commands that are parsed and executed by the

application-server according to its own syntax and semantics. The interface between the bitmap-

server and the application-server is implemented in the same way as the Ensemble interface, in terms

of downcalls and upcalls that we will not list in detail here. Ensemble is not aware of this separation of

function between the bitmap and application "layers"; the combination of these two layers appears to

Ensemble to be a single "application" layer.

Note also that Figure 3-1 does not show an application-FE layer at the participants' front-end nodes.

Instead, the application program runs in the server node only, with the participants' user interface

being taken care of completely by the bitmap-FE layer (as described below). This allows easy

development of applications, which can be written to manipulate the shared bitmap in the same way

that they would manipulate a user's directly-connected screen bitmap; there is no need to write a
4"distributed" application program. It should also be fairly straightforward to convert an existing

application program, that interfaces directly with a user's bitmapped screen, to use the shared bitmap

instead. This architecture also assumes minimal support from the participants' workstations, only

requiring that they be able to run the bitmap-FE software.

3.1. Object Specifications

The shared bitmap facility provides the following objects for sharing in a conference:

The conference description (which as we have described every conference must have), which

consists of the following components:

- A specification of what application is to be run; this is used to initialize the application-
server for this conference.

- A brief text statement of the "purpose" of the conference.

The current size (height and width) of the shared bitmap; this is "undefined" if the bitmap

has not yet been initialized.

e The shared bitmap itself. This is a rectangular array of intensity bits that can be displayed, in whole

or part, on a raster screen [20, 8].* The shared bitmap is made available to all participants in a

conference, i.e., their bitmap-FEs receive copies of the bitmap for display on their screens. The

application-server can freely read and update the contents of the bitmap, either bit-by-bit or using

4 Note that the shared bitmap is just one example of how Ensemble can be used. More sophisticated application programs
that are distributed between the server and front-ends are supported equally well by the Ensemble architecture, as described
i.n (231.

5 The ideas presented in this section can be easily extended to raster images that allow multiple bits per pixel, designating
gray-levels or color; additional storage and bandwidth will of course be required to support this-

fill:
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* higher-level constructs such as lines, rectangles, characters, arcs, and so on; all such updates are

- transmitted to the participants' bitmap-FEs for display.

e One pointing-cursor for each participant in the conference. Each pointing cursor is specified by its

current position (x- and y-coordinates) and a small rectangular bit-pattern called its shape. The set of

pointing cursors are shared among all participants, to allow each to observe the movements of the

others' pointing devices; assigning different shapes allows the different participants' cursors to be

distinguished.

* A bit pattern, called own-cursor-shape, that every participant will use on his own screen to

distinguish his pointing cursor from those of the others.

. One text-feedback object per participant, each available only to the given participant. These can be

used by the application-server to give participant-specific feedback, and also to allow participants to

send text "messages" to each other (as described under the conference activities, below).

* For each participant, an input-stream consisting of a sequence of keystrokes and mouse button

events from the participant's workstation; these are passed to the application-server for processing.

- For each participant, an available-screen-space object that specifies how much space (height and

width, in pixels) the participant has available on his screen for displaying the shared bitmap. This will

be used, as described below, in choosing a suitable size for the shared bitmap that all participants -

can accommodate.

3.2. Activity Specifications

The following activities are defined in a conference that uses the shared bitmap facility:

e One stream activity per participant, which allows the participant's bitmap-FE to add keystrokes and

mouse button events to the participant's input-stream object (described above). The application-

server receives an upcall whenever new stream input arrives, and can remove and process input from

the participants' input streams according to its own command syntax and semantics. The

application-server might implement not only application commands (e.g., to edit a document), but

also "conference control" commands to selectively disable, and re-enable, individual participants'

stream activities. Thus, the application-server may accept input from only one participant at a time if

it wishes, which is useful for sharing existing single-user application programs.

• One pointing activity per participant, for tracking movements of the participant's pointing device.

. The purpose of these activities is to allow participants to "point" at information that they may be

referring to in their voice channel discussion, without involving the application program or disturbing

S. . . . . . . . . - ----.. . . . . . . . .. --- - .-- - - - - - - - - - - - - - - - - - --. .- . .. . . . . . . .
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the contents of the shared bitmap. Each participant's bitmap-FE sends periodic mouse position

reports (relative to the "virtual" coordinate system of the bitmap, not the participant's physical screen

coordinates), at some predetermined frequency, to the bitmap-server which updates the participant's

pointing-cursor position and forwards the updates to all participants' bitmap-FEs.6

9 A message activity for each participant that allows the participant to send brief text messages, to the

entire group or "privately" to individual participants.

* An activity for each participant that allows the participant's bitmap-FE to set or modify the height

and width in his "available screen space" object.

3.3. Participant Interface

+----------------------------------

I 1 I

Shared I
Bitmap I

XI
I

+----------------------------------
Text Feedback I

+----------------------------------
I I :::'
I Private I

- I I
+----------------------------------

Figure 3-2: Participant's Screen when Sharing a Bitmap

View of participant number '2'.

A participant can instruct his bitmap-FE to display the shared bitmap and pointing cursors anywhere

on his workstation screen (with the bitmap-FE "clipping" the bitmap if the display region is not large

enough), and may use parts of his screen for private information. A typical screen configuration is

shown in Figure 3-2. The bitmap-FE superimposes the participants' pointing cursor "shapes" at their

respective positions. (This superimposition is done by the bitmap-FE software, but it could use

multiple hardware cursors if the workstation has such a facility.) In the figure, we have used numbers

56
6In an actual implementation, it is possible to speed this up by having a bitmap-FE directly send mouse position reports to

the other bitmap.FEs as well as to the bitmap-server. This optimization is permissible because different participants' position
reports update different cursor objects., and can therefore be received and processed in any order.

* -. . . . . . .. . . . . . . ... '-
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to indicate the different shapes; this need not be the case in actual practice, e.g., "arrows" with
different orientations could be used. In addition, this participant's own cursor is displayed using the

defined "own-cursor-shape" (X in the figure) rather than the shape (which would be 2 in this

example) that the others see.1 In the figure, the cursor of participant 3 is not visible because that

participant is using his mouse for local interaction with his bitmap-FE.

When in a conference, a user's keyboard and mouse input are normally forwarded by his bitmap-FE

to the server node in order to move the participant's cursor or enter application commands. A

participant can instruct his bitmap-FE, in a number of ways (e.g., via an "escape character" or by

moving his mouse outside the region displaying the shared bitmap), to "dissociate" his keyboard and

mouse from the conference temporarily. This allows him to perform local interactions such as

changing his screen configuration, and retrieving or editing private information. At some point, the

participant may instruct his bitmap-FE to "return" to the conference, i.e., resume forwarding

keyboard and mouse input.

3.4. Starting a Conference
The following sequence of steps is taken when setting up a conference sharing a bitmap. The

objective here is to defer creating the bitmap, and starting the application-server, until information Is -

obtained from "enough" participants as to how much screen space they can allocate for displaying

the shared bitmap. The bitmap-server then selects the minimum height and width from the

information received and initializes the bitmap accordingly, thus ensuring that all participants will be

able to see the entire bitmap on their screens. Note that Ensemble does not require that the steps be

followed in this exact order, or even that all of the steps below be taken. The selection of the shared

bitmap size, for example, could be done unilaterally by the application-server, ignoring the

participants' available screen sizes and letting the participants worry about clipping and scrolling the

bitmap if it is too large. Or, information about available sizes could be presented to a participant

designated as "chairperson", who chooses between accommodating more participants and being - -

able to present more information in a larger bitmap. All of these options, and others, can be ..-.

programmed by invoking the Ensemble functions in the appropriate order.

The following description uses "upcalls" and "downcalls" that are listed in the Appendix to this

paper.

. First, some user "creates" the conference by instructing his bitmap-FE to issue a Create.

7
7The participant's "own" cursor position is tracked and displayed locally by his bitmap.FE, which does not wait for or

display the "echo" from the bitmap-server. An option Is provided to display both the local and remotely-tracked mouse
positions, which can be useful for debugging or estimating the communication delay.

------------------------------------------------------------------
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Conference downcall. The "address" of the server node that will control the conference is specified;

we assume that the address is already known or is obtained using some unspecified lookup service.

The user enters the information needed in the conference "description": the "purpose" of the

conference, and a program name and arguments to be passed to the application-server. The user

also supplies a list of addresses of the front-end nodes of the desired conference participants; these

may be known in advance (or even reported over the phone), or obtained from some kind of "name

server". The user need not enter his own address, the bitmap-server will be supplied with it when it

receives the Initialize-Conference upcall, below. (The user might instead, or in addition, supply the

addresses of one or more "lookup servers" which will be sent conference descriptions, so that users

not explicitly invited to the conference may find out about it by inquiring of a lookup server.)

* The bitmap-server at the given server-address receives an Initialize-Conference upcall carrying the

above information. For each front-end address provided, including that of the initiatin user, the

bitmap-server includes that front-end in the conference by issuing an Add-Participant downcall; and

Add-Activity downcall is also issued to allow each front-end to set its "available screen space" object.

The bitmap-server finally issues a Sync-Object downcall indicating that it wishes to be notified when

all participants have acknowledged, positively or negatively, and a Set-Timer downcall with some

suitably chosen interval to protect against the possibility of one or more participants not responding

or taking too long. The Ensemble-server processes these downcalls as a batch when the bitmap-

server's handler returns, sending messages carrying the conference description and new activity to

the specified participants' front-ends.

j The bitmap-FE of each participant receives a New-Conference and an Activity-Received upcall. it

shows the conference description to the user and asks whether or not he wishes to join. If he does, a

Join-Conference downcall is issued. The user is also asked to allocate a region on his screen for

displaying the shared bitmap, and the size of this is encoded in a Send-Input downcall. If instead the

participant does not wish to join, a Leave-Conference downcall is issued.

9 When the Ensemble-server receives notification of every participant agreeing to join or leave, it

issues a Sync-Complete upcall to the bitmap-server. If instead the previously-specified timeout

interval expires, a Timer-Expired upcall is issued. We assume that in this case the bitmap-server does

not wish to wait for the remaining participants to join (and therefore issues an Abort-Sync downcall),

and proceeds to select a bitmap size as described here. The bitmap-server examines the available -.-

screen sizes returned by the participants who agreed to join, and computes the minimum height and

width. The shared bitmap is initialized with the selected height and width (and some standard initial

contents, e.g., all zeroes). The Add-Object downcall and a set of Give-Object downcalls are used to

make the bitmap available to all participants. The bitmap-server also sets up other objects (text.

p•

o. -. '. ". . . ,. . " •. .. , . .. " . .- . . . '. .' . " . '. " ° . " .' . •. ... , " .. .. •" , ' , '. , ,' ' " o , . '" . . . " ", .. * a . .-- -,
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feedback objects and pointing-cursors) and activities (stream, pointing, and message) for each --

participant, using the Add-Object, Give-Object, and Add-Activity downcalls. As a final step, the

bitmap-server issues an Initialize-Conference upcall to the application-server so that the latter may set

up its own state information in readiness for conference activity. From the point of view of the users

and the application, the conference officially "starts" at this stage, although to Ensemble the

conference started the moment it was created.

e The participants' bitmap-FEs receive New-Object and Receive-Activity upcalls for each object

(including the shared bitmap) and activity given to them. Each such upcall carries an encoded

description of the object or activity. (For the shared bitmap, it is only necessary to send the height

and width, because the bits themselves are known to be initially all zeroes and need not be sent.) The

bitmap-FE thus displays the objects in the screen regions designated by the participant, and sets up

some state information to "associate" the participant's keyboard and mouse with the conference

activities. (The devices can be temporarily "dissociated" by the participant, as described earlier.)

Once a participant's workstation is set up as above, keyboard and pointing device input are

transmitted by his bitmap-FE to the bitmap-server; this is done using the Send-Input downcall, which

results in an Input-Received upcall to the bitmap-server. The bitmap-server receiving input under a

pointing activity, i.e., mouse position reports, updates the participant's pointing cursor position and

sends the update to all participant's bitmap-FEs (using an Update-Object downcall, as a result of

which every participant's bitmap-FE receives an Object-Updated upcall). Stream input received by

the bitmap-server is passed up the application-server for processing. The application-server may

perform one or more update operations on the shared bitmap, e.g., to echo a character, scroll the

contents of a document, or display the effect of some other application command; these are similarly

transmitted to all participants' bitmap-FEs, using Update-Object and Object-Updated, for processing

and display.

After the bitmap has been initialized and the conference "started", Join-Conference downcalls may

be received from additional participants. This may happen with a participant who was originally

added to the conference but who did not reply in time (i.e., the bitmap-server timed out and went

p ahead with the conference), or in the case of a participant who found out about the conference from

some "lookup" server. In the latter case, the application-server must decide whether or not to allow

the given participant into the conference, based on its own criteria; it may make an immediate

decision to accept or reject the participant, or may ask some participant (e.g., the designated
"chairperson") to decide. Once the decision is made, manually or automatically, to allow the

participant into the conference, Give-Object and Add-Activity downcalls are issued by the bitmap-

server to get the participant started, just as described earlier. Because the shared bitmap may have

, p,'



19U

been updated since the conference started, the new participant's bitmap-FE cannot assume that the

shared bitmap is clear. The current contents of the shared bitmap must be sent to newly-joining

participants, and can be encoded in some efficient way for such transmission, e.g., sending the

positions and lengths of contiguous "runs" of one bits.

,I"• 'I
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4. Conclusion

We have proposed a layered software architecture for real-time conferences that allows different

applications to use a common set of conference control functions named Ensemble. These functions

support the sharing of application-defined objects among the participants of a conference, and the

manipulation of these objects via one or more application-defined groups of commands called

activities. We used the example of sharing a bitmap and multiple pointing cursors to illustrate how

objects and activities can be defined in order to realize a particular kind of conference. Other kinds of

useful functions can be implemented in the form of appropriately-defined shared objects and

activities, such as meeting "agendas" and "minutes" and "votes", or a queue of "requests" for

permission to enter commands via some activity. It is also possible for high-level application objects

to be shared between servers and participants' front-end nodes, allowing for more compact

transmission of information and local viewing of the application objects. An example system

designed along these lines, which supports real-time joint document editing using the concepts

presented here, is described in [23]; this uses and extends ideas that have appeared in recent

"distributed editing" protocols [9, 24]. It is even conceivable to include voice communication in this

framework, by treating the voice stream as a shared "object", with the act of speaking being the

operation" that participants can perform on this object. Implementation of this idea, which we have

not attempted, will of course require special hardware and communication protocol support [3]. -

In [23] we describe how other useful functions, not described in this paper, can be implemented

within the same framework:

- Concurrency control among commands from multiple activities is supported by Ensemble
using timestamps[15, 25] on command messages and object updates. Ensemble's
centralized conference architecture ensures "mutual consistency" in that all participants'
front-ends will see conflicting updates in the same order. However, stronger forms of
consistency (e.g., "serializability" [71) are not automatically guaranteed; these are left as
options that the application implements if it wishes using the timestamp information that
Ensemble provides.

. Conference and participant "lookup" facilities can be implemented by allowing nodes to
release conference description information in response to queries from users.

- It is possible to add server nodes to a conference as "participants" and give them copies -

of some or all of the objects shared in the conference. This makes it possible to increase
the availability of conference description information for queries, or to "move" a
conference to a different server in case of a crash or impending shutdown of the original
one.

- Recovery from front-end node crashes is supported by allowing a participant to "rejoin" a
conference, at which point he receives up-to-date copies of all objects available to him in
the conference. In addition, if the participant's front-end had previously "checkpointed"
his copy of these objects, the timestamps on the checkpointed copies can be used by the

- - - - - - - - - - - - --- - - -
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server to send a log of intervening changes rather than complete new copies of the
objects; no changes will need to be transmitted for an object that has not been updated in
the meantime. (The same technique is used to restart a participant who has been absent
from the conference for a long time.)

In [23] we also explore alternatives to the centralized architecture presented here, in which

participants' "front-end" nodes can communicate directly; this can improve response time at the cost

of more complex synchronization.

4.1. Implementation Status

An implementation of the shared bitmap facility is now complete (as of April 1984). To attract users

for testing the system, our first application will be a conference in which participants cooperate to

solve a crossword puzzle. Because the shared bitmap facility does not use the full flexibility of

Ensemble, and passes many "upcalls" and "downcalls" between the application and Ensemble with

little or no processing on its own part, we have chosen to implement the bitmap and Ensemble

functions in a single "layer". The interface to the application is still layered, and closely resembles

the Ensemble specification presented in the Appendix.

The underlying message transport mechanism is being implemented directly in terms of datagrams

(using the DoD internet datagram protocol IP [22]) rather than virtual circuits.8 When the same

information must be sent to multiple receivers, datagrams allow for more efficient implementation

than separate virtual circuits (between the server node and each front-end) because only one

retransmission queue and timer need be maintained for all receivers. Also, retransmission of lost

messages can be avoided in certain cases; for example, with mouse position reports it is more

* important to process the latest report quickly than it is to reliably receive all previous ones. (The use

of timestamps in this case allows delayed obsolete reports to be discarded, as in packet voice

transmission [3].) Datagrams would be even more efficient if broadcast or multicast facilities were

available; while multicast is not currently included in DoD-IP, it is supported by the Xerox Network

System protocols at the datagram level [4).

4.2. Related Work

Real-time conferencing in the form of "terminal linking" has been in existence since at least the

early days of NLS [6], now marketed by Tymshare as Augment T M .  Similar features, with

enhancements such as multiple "windows" and "virtual terminal" support for dissimilar display

terminals, now exist on many systems. Terminal linking, whether physical or virtual, allows an

8 The transport mechanism is based on a protocol designed by Oavid Reed for coordinating a bitmap between a server and a
single workstation; we have made several extensions to the protoco: to deal with multiple workstations in a conference.
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arbitrary existing program to be shared among a group of users by redirecting its output to multiple

terminals and accepting input from any number of them. This has often been found useful, e.g., for

1debugging a program with which some other user encountered a problem. (Such joint debugging is

often accompanied by a telephone conversation.) This kind of sharing, however, is accomplished at

the lowest possible level of abstraction, namely the input and output character streams of the

program; this does not allow for useful functions such as direct transfer of application information (as

opposed to character streams) between different programs. The character stream model of program

behavior is also somewhat out of date, considering the proliferation of directly-addressable

bitmapped screens and pointing devices; the shared bitmap facility we have defined is an attempt to

remedy this last problem.

More recently, some application-specific conferencing systems have appeared, e.g., as additions to

the computer-aided design systems TOPES [211 and Palette [191. While such systems have been

useful in their particular application areas, they are typically specialized and inflexible, e.g., have a

fixed definition of the "chairperson's" role or are restricted to groups of two users. Our objective has

been to expose the underlying principles that are involved in designing such conferencing systems

for any application. The Ensemble architecture presents a general framework in terms of which these

existing conferencing systems, as well as terminal linking, can be described as special cases. In

addition, it allows for extension to new applications and for experimenting with different conference

"styles".

4.3. Open Systems Interconnection

We observe that the Ensemble "layer" that we have postulated corresponds very well to the OSI

"Session" layer. A real-time conference is essentially a multi-party "session", and is independent of

the underlying transport-level protocol being used to implement it. (For example, we do not require

that the same transport-level connections be used for the duration of a conference, or that transport-

level connections always be open. A conference can be created well in advance of the time when

participants join, without setting up any transport-level connections until they are needed.) Ensemble

supports the transmission of uninterpreted blocks of data ("session-service-data-units"), leaving it to

the higher layer(s) to impose some structure and meaning (as objects and commands) to these

blocks, and also supports the "recovery" of participants when their nodes or transport connections

fail; this again matches the description of the OSI Session layer very well,

Multi-party network "connections", such as real-time conferences, have some characteristics that

make them very different from two-party connections. In particular a multi-party connection can

dynamically grow and shrink as parties leave and join; this distinctive feature is reflected in the

-7:::
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structure of the Ensemble functions. Although the OSI reference model makes some mention of

"multi-endpoint connections" (cf. Appendix A of [14]), there is little current activity in defining

protocols for this important area. (This remains so despite considerable progress in distributed

databases, for example.) The Ensemble architecture is an attempt to meet the need for a multi-

endpoint Session layer protocol; we hope to stimulate further discussion toward the development of

multi-endpoint protocol standards.

I ) if.-
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APPENDIX: Ensemble Specification

We present here a list of "downcalls" and "upcalls" between the Ensemble and application layers,

in the form of procedure names and argument types. We prefix each procedure name with an
.arrow" to indicate the direction of the call, down (1) or up (T). We also prefix the call with an "F" or

"S" to indicate whether it is a front-end or server call, respectively; calls that do not have either prefix

(such as for "timers") apply to both front-end and server nodes.

We briefly explain here the different argument types accepted by the downcalls and upcalls:

-Server nodes and participants' front-end nodes are referred to by their network
addresses (e.g., network number, host, and socket). How these addresses are
determined, e.g., by name lookup, is not visible to Ensemble.

Unique ids (identifiers) are used for referring to many kinds of entities: conferences -
("confid"), participants ("pid"), objects ("objid"), activities ("actid"), and timers
("timerid"). Unique ids can be generated by standard techniques, e.g., by using the
"timestamp" (below) at the time the entity in question is generated. Some kinds of entity
identifiers need to be unique only within a given context, e.g., objects and activities in a
conference; for these, it is possible to have much more compact ids, e.g., indexes into an p
array. (Note that users can be globally identified by their "fe-addresses", but within a
conference a shorter "pid" is used to identify the participants.) -

Timestamps are used on all object update and command input messages. These are
generated using a local clock value concatenated with the node's identifier in order to
ensure global uniqueness. The clocks of different nodes are only approximately
synchronized (e.g., using Lamport's method [151) if at all.

- All objects, updates, and commands, are passed between the application and Ensemble
in the form of programming language objects. It is assumed that some method (such as
[12]) exists for "encoding" an object at the sending node into a linear sequence of bytes
for transmission, and for "decoding" such a linear sequence at the receiving node into a
copy of the original object; subroutines for doing such encoding and decoding are
automatically invoked when objects are transmitted.

A few details have been skipped in the following presentation, such as calls that report errors (e.g., no

server at the given address, or participant attempts to Send-Input in an activity that he no longer

holds). We also do not specify subroutines that simply retrieve information or components of data

structures, e.g., reading the local clock or determining the address of the participant with a given

"pid" (or vice versa).

F4Create-Conference(server-address,description)
Asks the server at the given address to start a new conference with the given
"description" (see Section 2). The server will automatically add the front.end issuing this
downcall as a participant in the new conference.

STlnitialize-Conference(confid,description,timestamp) " ' '

In response to a Create-Conference, the application layer at the given server address is
asked to initialize its state information for a new conference with the given description.

........................ ".b . .,
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The description carries the given initial timestamp; its timestamp will change only if the
description is updated.

S Add-Participant(confid,fe-address) returns(pid)
The application-server requests that the participant at the given address be added to the
given conference; Ensemble-server returns the new participant's "id" within the
conference for future reference.

FT Added- To-Conference(confid,description)
The application-FE is informed that it has been added to the given conference, with given
"description", as a participant. The application-FE is expected to either Join or Leave
(below).

F1 Join -Conference(confid,description-timestamp)
The application-FE indicates that the participant wishes to join the given conference.
"Description-timestamp" is used by the server (below) to determine whether the
participant has an up-to-date conference description object or whether a new version
needs to be sent.

STParticipant-Joined(confid,pid,fe-address,descriptiontimestamp)
Upcall received by application-server when the participant's application-FE issues a Join-
Conference downcall.

F1 Leave-Conference(confid)
Participant does not wish to remain in the conference. (Can be issued at any time, when
added to the conference or later.)

STParticipant-Left(confid,pid)
Server upcall resulting from Leave-Conference.

SjRemove-Participant(confid,pid)
Remove the given participant from the conference.

FTRemoved-From-Conterence(confid)
Front-end upcall resulting from Remove-Participant, or from Terminate-Conference.

SL Terminate-Conference(confid)
Terminates the given conference; all participants' application-FEs get Removed-From-
Conference upcalls.

SlAdd-Object(confid,obj) returns(objid)
Add the given object to the conference; "objid" is returned for future reference. The
object is not yet "shared" with any participants, but can be using Give-Object.

SiGive-Object(confid,objid,pid)
Make the specified object in the conference available to the given participant.

FTNew.Object(confid,objid,value,timestamp)
Participant's application-FE is informed of Give-Object. Is expected to either Accept-
Object or Decline-Object, below.

F4Accept-Object(confid,objidtimestamp)
Indicates willingness to process updates to the given object. "Timestamp" is used in the
same way as "description-timestamp" in Join-Conference (above).

-- * - - - - - - -- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -
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STObject-Accepted(confid,pid,objid,timestamp)
Server upcall resulting from Accept-Object.

FIDecline-Object(confid,objid)
Participant's front-end does not wish to receive updates to the given object.

* ST Object-Declined(confid,pid,objid)
Server upcall resulting from Decline-Object.

SijRevoke-Object(confid,objid,pid)
The given participant is to no longer receive updates for the given object.

* FTObject-Revoked(confid,objid)
Front-end upcall resulting from Revoke-Object, or from Remove-Object (below).

S1 Remove -Object(confid,obid)
The given object is no longer shared in the conference. Every participant's applica~Ion-
FE receives an Object-Revoked upcall.

* SI.Update-Object(confid,objid,change-desc) returns(timestamp)
Send a description of an update to the given object, to all participants with whom the
object is shared. The timestamp associated with this update is returned.

* FTObiect-Updated(confid~objid,change-desc,timestamp)
Front-end upcall resulting from Update-Object. The application-FE should interpret the
"change-desc" in order to update its copy of the given object.

SISync-Object(confid,objid) returns(timestamp)
Wait for an acknowledgement, that the front-end has received and processed all updates
to the given object, from the front-end of each participant holding copies of the object.
Acknowledgements, are automatically generated by the participants' Ensemble-FEs when
the application- FE's handler for Object-Updated returns; Decline-Object suffices as a
"negative" acknowledgement.

* ST Sync -Comp/ete(conf id,objid,timestamp)
Acknowledgements received from all associated participants.

* SljAbort-Sync(confid,objid,timestamp)
Stop waiting for acknowledgements. Typically used in response to Timer-Expired
(below), when not all acknowledgements have been received.

* SJAdd-Actinity(confid,info,pid) returns(actld)
Create a new activity assigned to the participant with given "pad". "Info" carries a
specification of the commands available in this activty.

FTAcfivity-Received(confid,actid ,info)
Front-end upcall from Add-Activity, or Give-Activity.

SlGive-Activity(confid,actid,pid)
Give the specified activity to the specified participant, who will receive an Activty-
Received upcall. The participant who currently has the activity receives an Act".y
Revoked upcall.

FTActivity-Revoked(confid,actld)
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Front-end upcall resulting from Remove-Activity or Give-Activity.

SlSuspend-Activity(confid,actid)
Temporarily disallow commands in the given activity.

* FTActivity-Suspended(confid.actid)
Front-end upcall resulting from Suspend-Activity.

* SIResume-Activity(confid,actid)
Allow commands in the given activity once again.

FTActivity-Resumed(confid,actid)
Front-end upcall resulting from Resume- Activity.

S.1Remove-Activity(confid,actid)I
Removes the given activity from the conference.

F4Send-Input(confid,actid,command-desc) returns(timestamp)
Send the description of a command under the given activity.

STlnput-Received(confid,actid,pid,command-desc,input-timestamp,readsettimestamp)
UServer upcall resulting from Send-input. 'Input-timestamp" Is the value of the

participant's clock at the time of Send-Input; "readeet-timestamp" Is the timestamp of the
last object update that the participant's front-end had received at the time (can be used
for concurrency control).

lSet- Timer(time,obj) returns(timerld)
Set a timer to expire at the specified time. Can associate an arbitrary object, which is
passed back by Timer-Expired, below.

t Tmer-Expiredftimerid,obj)
The specified timer has expired.

.Postpone- Timer(timerid,new-tlme)
Reset the given timer to go off at a different time.

* lJAborf- Timerftimerld)
Discard the given timer, Le., don't give a Timner-Expired upcal.

TBackgroundo
UpcalI generated when there are no events waiting to be processed, ILe., the node Is -

* IS et-Background-Interval(int erval)
Ask to receive Background upcalls only when the specified amount of "idle" time has

P passed. (This interval is Initialized to some standard default value.)
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